A characterization of normed spaces among metric spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Metric Characterization of Normed Linear Spaces

Let X be a linear space over a field K = R or C, equipped with a metric ρ. It is proved that ρ is induced by a norm provided it is translation invariant, real scalar “separately” continuous, such that every 1-dimensional subspace of X is isometric to K in its natural metric, and (in the complex case) ρ(x, y) = ρ(ix, iy) for any x, y ∈ X.

متن کامل

Basic Properties of Metric and Normed Spaces

1 Definitions and Examples 1.1 Metric and Normed Spaces Definition 1.1. A metric space is a pair (X, d), where X is a set and d is a function from X ×X to R such that the following conditions hold for every x, y, z ∈ X. 1. Non-negativity: d(x, y) ≥ 0. 2. Symmetry: d(x, y) = d(y, x). 3. Triangle inequality: d(x, y) + d(y, z) ≥ d(x, y) . 4. d(x, y) = 0 if and only if x = y. Elements of X are call...

متن کامل

Normed Ordered and E-Metric Spaces

In 2007, Haung and Zhang introduced the notion of cone metric spaces. In this paper, we define an ordered space E, and we discuss some properties and examples. Also, normed ordered space is introduced. We recall properties of R, and we discuss their extension to E. We introduce the notion of E-metric spaces and characterize cone metric space. Afterwards, we get generalizations of notions of con...

متن کامل

Normed Gyrolinear Spaces: A Generalization of Normed Spaces Based on Gyrocommutative Gyrogroups

‎In this paper‎, ‎we consider a generalization of the real normed spaces and give some examples‎.  

متن کامل

Embedding Metric Spaces into Normed Spaces and Estimates of Metric Capacity

Let M be an arbitrary real normed space of finite dimension d ≥ 2. We define the metric capacity of M as the maximal m ∈ N such that every m-point metric space is isometric to some subset of M (with metric induced by M). We obtain that the metric capacity of M lies in the range from 3 to ⌊ 3 2d ⌋ + 1, where the lower bound is sharp for all d, and the upper bound is shown to be sharp for d ∈ {2,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 2011

ISSN: 0035-7596

DOI: 10.1216/rmj-2011-41-1-293